976 resultados para parathyroid hormone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human parathyroid hormone (hPTH) is currently the only treatment for osteoporosis that forms new bone. Previously we described a fish equivalent, Fugu parathyroid hormone 1 (fPth1) which has hPTH-like biological activity in vitro despite fPth1(1–34) sharing only 53% identity with hPTH(1–34). Here we demonstrate the in vivo actions of fPth1(1–34) on bone. In study 1, young male rats were injected intermittently for 30 days with fPth1 [30 μg–1000 μg/kg body weight (b.w.), (30fPth1–1000fPth1)] or hPTH [30 μg–100 μg/kg b.w. (30hPTH–100hPTH)]. In proximal tibiae at low doses, the fPth1 was positively correlated with trabecular bone volume/total volume (TbBV/TV) while hPTH increased TbBV/TV, trabecular thickness (TbTh) and trabecular number (TbN). 500fPth1 and 1000fPth1 increased TbBV/TV, TbTh, TbN, mineral apposition rate (MAR) and bone formation rate/bone surface (BFR/BS) with a concomitant decrease in osteoclast surface and number. In study 2 ovariectomized (OVX), osteopenic rats and sham operated (SHAM) rats were injected intermittently with 500 μg/kg b.w. of fPth1 (500fPth1) for 11 weeks. 500fPth1 treatment resulted in increased TbBV/TV (151%) and TbTh (96%) in the proximal tibiae due to increased bone formation as assessed by BFR/BS (490%) and MAR (131%). The effect was restoration of TbBV/TV to SHAM levels without any effect on bone resorption. 500fPth1 also increased TbBV/TV and TbTh in the vertebrae (L6) and cortical thickness in the mid-femora increasing bone strength at these sites. fPth1 was similarly effective in SHAM rats. Notwithstanding the low amino acid sequence homology with hPTH (1–34), we have clearly established the efficacy of fPth1 (1–34) as an anabolic bone agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum parathyroid hormone (PTH) and vitamin D are the major regulators of extracellular calcium homeostasis. The inverse association between PTH and vitamin D and the common age-related elevation of the PTH concentration are well known phenomena. However, the confounding or modifying factors of this relationship and their impact on the response of PTH levels to vitamin D supplementation need further investigation. Clinical conditions such as primary hyperparathyroidism (PHPT), renal failure and vitamin D deficiency, characterized by an elevation of the PTH concentration, have been associated with impaired long-term health outcomes. Curative treatments for these conditions have also been shown to decreases PTH concentration and attenuate some of the adverse health effects. In PHPT it has also been commonly held that hypercalcaemia, the other hallmark of the disease, is the key mediator of the adverse health outcomes. In chronic kidney disease the systemic vascular disease has been proposed to have the most important impact on general health. Some evidence also indicates that vitamin D may have significant extraskeletal actions. However, the frank elevation of PTH concentration seen in advanced PHPT and in end-stage renal failure have also been suggested to be at least partly causally related to an increased risk of death as well as cognitive dysfunction. However, the exact mechanisms have remained unclear. Furthermore, the predictive value of elevated PTH in unselected older populations has been less well studied. The studies presented in this thesis investigated the impact of age and mobility on the responses of PTH levels to vitamin D deficiency and supplementation. Furthermore, the predictive value of PTH for long-term survival and cognitive decline was addressed in an unselected population of older people. The hypothesis was that age and chronic immobility are related to a persistently blunted elevation of PTH concentration, even in the presence of chronic vitamin D deficiency, and to attenuated responses of PTH to vitamin D supplementation. It was also further hypothesized that a slightly elevated or even high-normal PTH concentration is an independent indicator of an increased risk of death and cognitive decline in the general aged population. The data of this thesis are based on three samples: a meta-analysis of published vitamin D supplementation trials, a randomized placebo controlled six-month vitamin D supplementation trial, and a longitudinal prospective cohort study on a general aged population. Based on a PubMed search, a meta-analysis of 52 clinical trials with 6 290 adult participants was performed to evaluate the impact of age and immobility on the responses of PTH to 25-OHD levels and vitamin D supplementation. A total of 218 chronically immobile, very old inpatients were also enrolled into a vitamin D supplementation trial. Mortality data for these patients was also collected after a two-year follow-up. Finally, data from the Helsinki Aging Study, which followed three random age cohorts (75, 80 and 85 years) until death in almost all subjects, was used to evaluate the predictive value of PTH for long-term survival and cognitive decline. This series of studies demonstrated that in older people without overt renal failure or severe hypercalcaemia, serum 25-OHD and PTH were closely associated, but this relationship was also affected by age and immobility. Furthermore, a substantial proportion of old chronically bedridden patients did not respond to vitamin D deficiency by elevating PTH, and the effect of a high-dose (1200 IU/d) six-month cholecalciferol supplementation on the PTH concentration was minor. This study demonstrated longitudinally for the first time that the blunted PTH also persisted over time. Even a subtle elevation of PTH to high-normal levels predicted impaired long-term health outcomes. Slightly elevated PTH concentrations indicated an increased risk of clinically significant cognitive decline and death during the last years of life in a general aged population. This association was also independent of serum ionized calcium (Ca2+) and the estimated glomerular filtration rate (GFR). A slightly elevated PTH also indicated impaired two-year survival during the terminal years of frail elderly subjects independently of Ca2+, GFR, and of 25-OHD levels. The interplay between PTH and vitamin D in the regulation of calcium homeostasis is more complex than has been generally considered. In addition to muskuloskeletal health parathyroid hormone is also related to the maintenance of other important domains of health in old age. Higher PTH concentrations, even within conventional laboratory reference ranges, seem to be an independent indicator of an increased risk of all-cause and of cardiovascular mortality, independently of established cardiovascular risk factors, disturbances in mineral metabolism, and renal failure. Limited and inconsistent evidence supports the role of vitamin D deficiency-related lack of neuroprotective effects over the causal association between PTH and impaired cognitive functions. However, the causality of these associations remains unclear. The clinical implications of the observed relationships remain to be elucidated by future studies interfering with PTH concentrations, especially by long-term interventions to reduce PTH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production and puriWcation of gilthead sea bream recombinant parathyroid hormone related protein [sbPTHrP(1–125)] using an Escherichia coli system and one step puriWcation process with continuous elution gel electrophoresis is reported. The cDNA encoding sbPTHrP(1–125) was cloned into a prokaryotic expression vector pET-11a. The recombinant plasmid was used to transfect E. coli BL21(DE3) pLysS and sbPTHrP(1–125) synthesis was induced by addition of 1mM isopropyl- -D-thiogalactopyranoside. The rapid one step isolation method gave pure sbPTHrP(1–125) as judged by SDS–PAGE and yielded up to 40mg/L of culture medium (3.3mg protein/g of bacteria). The bioactivity of recombinant sbPTHrP(1–125) assessed using an in vitro scale bioassay was found to be equipotent to PTHrP(1–34) in stimulating cAMP accumulation. Assessment of the immunological reactivity of the isolated protein by Western blot revealed it cross-reacts with antisera speciWc for the N-terminal and C-terminal region of PTHrP. In a radioimmunoassay speciWc for piscine N-terminal (1–34 aa) PTHrP, the recombinant sbPTHrP(1–125) was equipotent with PTHrP(1–34) in displacing labelled 125I-PTHrP(1–36) PTHrP from the antisera. The availability of recombinant sbPTHrP will allow the development of region speciWc assays and studies aimed at deWning post-secretory processing of this protein and its biological activity in Wsh.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we describe the isolation and characterisation of the parathyroid hormone-related protein (PTHrP) gene from the teleost Fugu rubripes. The gene has a relatively simple structure, compared with tetrapod PTHrP genes, composed of three exons and two introns, encompassing 2.25 kb of genomic DNA. The gene encodes a protein of 163 amino acids, with a putative signal peptide of 37 amino acids and a mature peptide of 126 amino acids. The overall homology with known tetrapod PTHrP proteins is low (36%), with a novel sequence inserted between positions 38 and 65, the absence of the conserved pentapeptide (TRSAW) and shortened C-terminal domain. The N-terminus shows greater conservation (62%), suggesting that it may have a hypercalcaemic function similar to that of tetrapod PTHrP. In situ localisation and RT–PCR have demonstrated the presence of PTHrP in a wide range of tissues with varying levels of expression. Sequence scanning of overlapping cosmids has identified three additional genes, TMPO, LDHB and KCNA1, which map to human chromosome 12, with the latter two mapping to 12p12-11.2. PTHrP in human also maps to this chromosome 12 sub-region, thus demonstrating conservation of synteny between human and Fugu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of the Na(+)/H(+) exchanger NHE3 is regulated by a number of factors including parathyroid hormone (PTH). In the current study, we used a renal epithelial cell line, the opossum kidney (OKP) cell, to elucidate the mechanisms underlying the long-term effects of PTH on NHE3 transport activity and expression. We observed that NHE3 activity was reduced 6 h after addition of PTH, and this reduction persisted almost unaltered after 24 h. The decrease in activity was associated with diminished NHE3 cell surface expression at 6, 16, and 24 h after PTH addition, total cellular NHE3 protein at 16 and 24 h, and NHE3 mRNA abundance at 24 h. The lower levels of NHE3 mRNA were associated to a small, but significant, decrease in mRNA stability. Additionally, by analyzing the rat NHE3 gene promoter activity in OKP cells, we verified that the regulatory region spanning the segment -152 to +55 was mildly reduced under the influence of PTH. This effect was completely abolished by the presence of the PKA inhibitor KT 5720. In conclusion, long-term exposure to PTH results in reduction of NHE3 mRNA levels due to a PKA-dependent inhibitory effect on the NHE3 promoter and a small reduction of mRNA half-life, and decrease in the total amount of protein which is preceded by endocytosis of the apical surface NHE3. The decreased NHE3 expression is likely to be responsible for the reduction of sodium, bicarbonate, and fluid reabsorption in the proximal tubule consistently perceived in experimental models of PTH disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives Animal and in vitro studies suggest that parathyroid hormone (PTH) may affect articular cartilage. However, little is known of the relationship between PTH and human joints in vivo.

Design Longitudinal.

Setting Barwon Statistical Division, Victoria, Australia.

Participants 101 asymptomatic women aged 35–49 years (2007–2009) and without clinical knee osteoarthritis, selected from the population-based Geelong Osteoporosis Study.

Risk factors Blood samples obtained 10 years before (1994–1997) and stored at −80°C for random batch analyses. Serum intact PTH was quantified by chemiluminescent enzyme assay. Serum 25-hydroxyvitamin D (25(OH)D) was assayed using equilibrium radioimmunoassay. Models were adjusted for age, bone area and body mass index; further adjustment was made for 25(OH)D and calcium supplementation.

Outcome Knee cartilage volume, measured by MRI.

Results A higher lnPTH was associated with reduced medial—but not lateral—cartilage volume (regression coefficient±SD, p value: −72.2±33.6 mm3, p=0.03) after adjustment for age, body mass index and bone area. Further sinusoidal adjustment (−80.8±34.4 mm3, p=0.02) and 25(OH)D with seasonal adjustment (−72.7±35.1 mm3, p=0.04), calcium supplementation and prevalent osteophytes did not affect the results.

Conclusions A higher lnPTH might be detrimental to knee cartilage in vivo. Animal studies suggest that higher PTH concentrations reduce the healing ability of cartilage following minor injury. This may be apparent in the presence of increased loading, which occurs in the medial compartment, placing the medial cartilage at higher risk for injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: There is inconsistent evidence that maternal 25-hydroxyvitamin D [25-(OH)D] deficiency may impair fetal growth.

Objective:
The objective of the study was to examine the relationship between maternal 25-(OH)D and PTH concentrations at less than 16 and 28 wk gestation and offspring birth size.

Design: This was an observational study.

Setting: The study was set at a hospital antenatal clinic.

Participants: Women with singleton pregnancies, before 16 wk gestation, participated.

Interventions: No interventions were used.

Main Outcome Measure:
Knee-heel length at birth was the main outcome measure.

Results:
Altogether 374 of 475 (79%) women completed this study. We found no evident relationship between birth size measures and maternal 25-(OH)D or PTH at recruitment (∼11 wk). Gestation length was 0.7 wk (95% confidence interval −1.3, −0.1) shorter and knee-heel length was 4.3 mm smaller (−7.3, −1.3) in infants of 27 mothers with low 25-(OH)D (<28 nmol/liter) at 28–32 wk vs. babies whose mothers had higher concentrations. This latter difference was reduced to −2.7 mm (−5.4, −0.1) after adjustment for gestation length, suggesting some of the apparent growth deficit is explained by shorter gestation. There was no evidence that other birth measures were affected. Maternal PTH concentration at 28–32 wk was positively related to knee-heel length, birth weight, and mid-upper arm and calf circumferences. These associations were independent of 25-(OH)D concentration.

Conclusions:
Low maternal 25-(OH)D in late pregnancy is associated with reduced intrauterine long bone growth and slightly shorter gestation. The long-term consequences for linear growth and health require follow-up. The positive relationship between maternal PTH and measures of infant size may relate to increased mineral demands by larger babies, but warrants further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this population-based study, seasonal periodicity was seen with reduced serum vitamin D, increased serum PTH, and increased bone resorption in winter. This was associated with an increased proportion of falls resulting in fracture and an increased risk of wrist and hip fractures.

Introduction:
In a population of women who reside in a temperate climate and do not generally receive dietary vitamin D supplementation, we investigated whether seasonal vitamin D insufficiency is associated with increased risk of fracture.

Materials and Methods: An observational, cross-sectional, population-based study set in southeastern Australia (latitude 38–39° S). Participants were drawn from a well-defined community of 27,203 women ≥55 years old: 287 randomly selected from electoral rolls, 1635 with incident fractures, and 1358 presenting to a university hospital with falls. The main outcome measures were annual periodicities of ultraviolet radiation, serum 25-hydroxyvitamin D [25(OH)D], serum parathyroid hormone (PTH), serum C-telopeptide (CTx), BMD, falls, and fractures.

Results:
Cyclic variations in serum 25(OH)D lagged 1 month behind ultraviolet radiation, peaking in summer and dipping in winter (p < 0.001). Periodicity of serum PTH was the inverse of serum 25(OH)D, with a phase shift delay of 1 month (p = 0.004). Peak serum CTx lagged peak serum PTH by 1–2 months. In late winter, a greater proportion of falls resulted in fracture (p < 0.001). Seasonal periodicity in 439 hip and 307 wrist fractures also followed a simple harmonic model (p = 0.078 and 0.002, respectively), peaking 1.5–3 months after the trough in 25(OH)D.

Conclusions:
A fall in 25(OH)D in winter is accompanied by increases in (1) PTH levels, (2) bone resorption, (3) the proportion of falls resulting in fracture, and (4) the frequency of hip and wrist fracture. Whether vitamin D supplementation in winter can reduce the population burden of fractures requires further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For young children, the level of vitamin D required to ensure that most achieve targeted serum 25-hydroxyvitamin D [25(OH)D] ≥50 nmol/L has not been studied. We aimed to investigate the effect of vitamin D-fortified milk on serum 25(OH)D and parathyroid hormone (PTH) concentrations and to examine the dose–response relationship between vitamin D intake from study milks and serum 25(OH)D concentrations in healthy toddlers aged 12–20 mo living in Dunedin, New Zealand (latitude 46°S). Data from a 20-wk, partially blinded, randomized trial that investigated the effect of providing red meat or fortified toddler milk on the iron, zinc, iodine, and vitamin D status in young New Zealand children (n = 181; mean age 17 mo) were used. Adherence to the intervention was assessed by 7-d weighed diaries at wk 2, 7, 11, 15, and 19. Serum 25(OH)D concentration was measured at baseline and wk 20. Mean vitamin D intake provided by fortified milk was 3.7 μg/d (range, 0–10.4 μg/d). After 20 wk, serum 25(OH)D concentrations but not PTH were significantly different in the milk groups. The prevalence of having a serum 25(OH)D <50 nmol/L remained relatively unchanged at 43% in the meat group, whereas it significantly decreased to between 11 and 15% in those consuming fortified study milk. In New Zealand, vitamin D intake in young children is minimal. Our findings indicate that habitual consumption of vitamin D-fortified milk providing a mean intake of nearly 4 μg/d was effective in achieving adequate year-round serum 25(OH)D for most children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Cardiac remodeling in uremia is characterized by left ventricular hypertrophy, interstitial fibrosis and microvascular disease. Cardiovascular disease is the leading cause of death in uremic patients, but coronary events alone are not the prevalent cause, sudden death and heart failure are. We studied the cardiac remodeling in experimental uremia, evaluating the isolated effect of parathyroid hormone (PTH) and phosphorus. Methods. Wistar rats were submitted to parathyroidectomy (PTx) and 5/6 nephrectomy (Nx); they also received vehicle (V) and PTH at normal (nPTH) or high (hPTH) doses. They were fed with a poor-phosphorus (pP) or rich-phosphorus (rP) diet and were divided into the following groups: 'Sham': G1 (V + normal-phosphorus diet (np)) and 'Nx + PTx': G2 (nPTH + pP), G3 (nPTH + rP), G4 (hPTH + pP) and G5 (hPTH + rP). After 8 weeks, biochemical analysis, myocardium morphometry and arteriolar morphological analysis were performed. In addition, using immunohistochemical analysis, we evaluated angiotensin II, alpha-actin, transforming growth factor-beta (TGF-beta) and nitrotyrosine, as well as fibroblast growth factor-23 (FGF-23), fibroblast growth factor receptor-1 (FGFR-1) and runt-related transcription factor-2 (Runx-2) expression. Results. Nx animals presented higher serum creatinine levels as well as arterial hypertension. Higher PTH levels were associated with myocardial hypertrophy and fibrosis as well as a higher coronary lesion score. High PTH animals also presented a higher myocardial expression of TGF-beta, angiotensin II, FGF-23 and nitrotyrosine and a lower expression of alpha-actin. Phosphorus overload was associated with higher serum FGF-23 levels and Runx-2, as well as myocardial hypertrophy. FGFR-1 was positive in the cardiomyocytes of all groups as well as in calcified coronaries of G4 and G5 whereas Runx-2 was positive in G3, G4 and G5. Conclusion. In uremia, PTH and phosphorus overload are both independently associated with major changes related to the cardiac remodeling process, emphasizing the need for a better control of these factors in chronic kidney disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous experimental studies have indicated that locally administered enamel matrix derivative (EMD) and parathyroid hormone (PTH) may have a stimulatory effect on bone formation. However, it is not clear if the positive effect of EMD is related to its effect on the periodontium as a whole or directly on the bone-forming cells. In addition, it is not known if the presentation of PTH by adding the amino acid sequence Arg-Gly-Asp (RGD) is essential for its osteopromotive effect. Local delivery of a bioactive substance at the right time and in the right concentration often constitutes a major challenge. Polyethylene glycol-based hydrogel (PEG) is a degradable vehicle developed for delivery of bioactive proteins. To enhance the mechanical stability of the PEG-bioactive substance complex, an osteoconductive bone substitute material is often needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Autogenous bone is the most successful bone-grafting material; however, multiple disadvantages continue to drive developments of improved methods for bone regeneration. AIM: The aim of the present study was to test the hypothesis that an arginine-glycine-aspartic acid (RGD) modified polyethylene glycol-based matrix (PEG) containing covalently bound peptides of the parathyroid hormone (PTH(1-34)) enhances bone regeneration to a degree similar to autogenous bone. MATERIAL AND METHODS: Six American foxhounds received a total of 48 cylindrical titanium implants placed in the mandible between the first premolar and the second molar. Five, respectively, 7 months following tooth extraction, implants were placed into the center of surgically created defects. This resulted in a circumferential bone defect simulating an alveolar defect with a circular gap of 1.5 mm. Four treatment modalities were randomly allocated to the four defects per side: (1) PEG-matrix containing 20 microg/ml of PTH(1-34), and 350 microg/ml cys-RGD peptide, (2) PEG alone, (3) autogenous bone and (4) empty defects. Histomorphometric analysis was performed 4 and 12 weeks after implantation. The area fraction of newly formed bone was determined within the former defect and the degree of bone-to-implant contact (BIC) was evaluated both in the defect region and in the apical region of the implant. For statistical analysis ANOVA and subsequent pairwise Student's t-test were applied. RESULTS: Healing was uneventful and all implants were histologically integrated. Histomorphometric analysis after 4 weeks showed an average area fraction of newly formed bone of 41.7+/-1.8% for matrix-PTH, 26.6+/-4.1% for PEG alone, 43.9+/-4.5% for autogenous bone, and 28.9+/-1.5% for empty defects. After 12 weeks, the respective values were 49.4+/-7.0% for matrix-PTH, 39.3+/-5.7% for PEG alone, 50.5+/-3.4% for autogenous bone and 38.7+/-1.9% for empty defects. Statistical analysis after 4 and 12 weeks revealed significantly more newly formed bone in the PTH(1-34) group compared with PEG alone or empty defects, whereas no difference could be detected against autogenous bone. Regarding BIC no significant difference was observed between the four treatment groups neither at 4 nor at 12 weeks. CONCLUSION: It is concluded that an RGD-modified PEG hydrogel containing PTH(1-34) is an effective matrix system to obtain bone regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a progressive disease affecting skeletal and cardiac muscle, as well as bone. Long term disuse and glucocorticoid treatments cause progressive osteoporosis in DMD patients, leading to an increase in fracture incidence. Treatments for osteoporosis in these patients have not been widely explored. Parathyroid hormone (PTH), an anabolic treatment for post-menopausal osteoporosis, could benefit DMD patients by improving skeletal properties and reducing fracture risk. Other PTH analogues are not currently FDA approved to treat osteoporosis, but may have improved osteogenic effects compared to the human analogue. Black bear PTH is especially promising as an osteoporosis treatment for the DMD population. Black bears are unique models of bone maintenance during disuse, since during six months of inactivity (hibernation), they maintain skeletal properties, unlike other hibernators. Additionally, black bear PTH has been correlated to bone formation markers during hibernation, indicating it may be, at least in part, the mechanism by which bears maintain bone during disuse. Employing black bear PTH as a treatment for osteoporosis in DMD patients could greatly improve quality of life for these individuals, and reduce the pain and expense associated with frequent fractures.